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Capture of K− by the 4He atom and the internal Auger effect in the Kαe kaonic atom
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In this paper, we have investigated the interactions of K− in a 4He target using a quantum mechanical approach.
For this purpose, we have used time-dependent perturbation theory and Fermi’s golden rule to calculate the capture
rate of K− by the 4He atom and the rate of internal Auger effect in the Kαe atom. The initial distribution of n, �

states in the Kα+ ion is also calculated. Some detailed analytical and numerical quantum mechanical calculations
are performed for several transitions. Our results for the n, � distributions in Kα+ ions are necessary to begin a
Monte Carlo simulation of the cascade processes in kaonic helium atoms.
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I. INTRODUCTION

The study of kaonic atoms is very important for inves-
tigating the K−-nucleus strong interaction at low energies.
Several processes occur in the following sequences when
the K− enters a target: stopping of the kaon, kaonic atom
formation in a highly excited state, and atomic cascade
consisting of a multistep transition to lower atomic states. It is
a complicated interplay of competitive collisions and radiative
deexcitation processes. Radiative transitions produce x-rays.
Strong interactions between the nucleus and kaon lead to a
shift and finite absorption width for the x-ray series which can
be measured [1–9].

Although the investigations of cascade processes of K−p

and K−d atoms have already been done [9–16], the cascade
dynamics for K− 4He atoms have not been fully understood
yet. Fortunately, precise experiments have recently been
carried out to detect x-ray yields of K− 4He atoms [3,5,9]. The
kaon is captured in a highly excited atomic orbit, replacing
one of the electrons which is ejected from the atom. Then,
Kαe atom is deexcited by internal Auger effect and the other
electron is ejected. Subsequently, we have a Kα+ ion which
starts cascade processes until either the K− is absorbed by
the nucleus or decays. Kα+ is deexcited to lower states by
competitive cascade processes: Stark mixing, the external
Auger effect, Coulomb transition, and radiative transitions
[9–17].

In this paper we have calculated the interaction rates of
the K− in a 4He target to determine the initial probability
distribution of n, � states in kaonic helium atom. It is necessary
for the forthcoming Monte Carlo simulation of the cascade
processes and x-ray yields of kaonic helium atoms. For this
purpose, time-dependent perturbation theory is used in Sec. II
to calculate the rate of K− capture by 4He or the Kαe kaonic
atom formation rate, and Fermi’s golden rule is used in Sec. III
to calculate the rate of the internal Auger effect in the Kαe
atom. It shoud be noted that our calculations are done without
any free parameters.

For the quantum mechanical calculations, detailed ana-
lytical and numerical calculations should be done for many
transitions. Then, the initial probability distributions for n, �

states in the Kαe atom and Kα+ ion are determined.

II. CALCULATION OF CAPTURE RATE OF A KAON
BY A HELIUM ATOM

When the K− enters a helium target, it loses its kinetic
energy due to scattering, deexcitation, and ionization by
helium atoms. The kinetic energy of the K− decreases until
the energy falls near the excitation energy of the first excited
state of helium (19.8 eV); it has been shown that most of the
kaons are captured before falling below this energy [17]. It is
captured in a highly excited atomic orbit by replacing one of
the electrons which is ejected from the atom. Capture of K−
by the helium atom is shown in Fig. 1.

If a semiclassical approach is used, n ∼ 25 is calculated for
the initial state of the K− in the Kαe atom. Indeed, we should
use a full quantum mechanical approach in order to determine
the initial distribution of n and � for the K− in the Kαe atom.
For this purpose, the Hamiltonian of the system (Fig. 1) is
written as follows:

H = HHe + p2

2μ
− 1

rkα

+ 1

2|�rkα − �r1| + 1

2|�rkα − �r2| , (1)

where μ is the reduced mass of K− and 4He, p stands for the
momentum operator of the kaon relative to the α particle and
HHe is the Hamiltonian of the helium atom,

HHe = p2
1

2
+ p2

2

2
− 1

r1
− 1

r2
+ 1

2|�r2 − �r1| , (2)

where pi is the momentum operator of the electrons relative
to the alpha particle. We have used the units in Table I to write
the Hamiltonians.

We consider the interaction terms of electrons with K− as
the perturbation potential,

H = H0 + V eηt , 0 < η � 1, (3)

where η is a small and positive parameter which is used for
applying the time dependent perturbation theory, and the limit
η → 0 is taken at the end of calculation. H0 = HHe + Hkα ,
Hkα = p2

2μ
− 1

rkα
, and V = 1

2|�rkα−�r1| + 1
2|�rkα−�r2| is considered the

perturbation potential.
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FIG. 1. Diagram of capture of K− by the helium atom.

Before the collision, when the distance between the kaon
and the helium atom is too large, the state ket in the
interaction picture is assumed to be |i〉, which is the eigenket
of the Hamiltonian H0 with energy Ei = q2

2μ
+ E0He; q is the

momentum of kaon relative to the α particle before collision
and E0He is eigenvalue of energy for the ground state of the
helium atom. Therefore, the space part of the eigenket of
the system before collision is |i〉 = |ψq

Kα,ψ0
He〉, where |ψ0

He〉 is
the ground state eigenket of the 4He atom which is determined
by variational method, and |ψq

Kα〉 is the eigenket of the
incoming kaon with momentum q relative to the α particle,
which can be determined using the hydrogen-like eigenket
with positive energies:

〈�rkα|�q〉 = ei �q·�rkα

L3/2
�

(
1 + iμkα

q

)
e

πμkα
2q

× 1F1

(
− iμkα

q
, 1; −i(qrkα + �q · �rkα)

)
, (4)

where μkα = mk mα

mk +mα
is the reduced mass of the kaon and

α particle, 1F1 is the hypergeometric function, and � is the
gamma function.

After the collision of K− with 4He, we have a Kαe atom and
a free electron. The two electrons in the 4He atom are identical
fermions, so we have the space- symmetrical eigenket |f 〉 =

1√
2
{|ψKαe1 , ψe2〉 + |ψKαe2 , ψe1〉} after collision. Therefore, we

need the eigenkets of the Kαe atom (|ψKαe〉) and the outgoing
free electron in the Coulomb potential of the α particle
(|ψe〉). To calculate |ψKαe〉, we have used the time-independent
perturbation theory:

Hk α e = Hkα + Heα + λ

2|�rkα − �r| , (5)

where λ is a dimensionless perturbation parameter, and even-
tually we may set λ → 1. Hkα and Heα are the Hamiltonians
for Kα and eα systems, respectively:

Hkα = p2
kα

2μkα

− 1

rkα

and Heα = p2
eα

2
− 1

r
, (6)

TABLE I. Units used in the calculations. h̄ is Planck’s constant,
me and e are the mass and charge of the electron, respectively, c is
the speed of light, and α is the fine structure constant.

Length Time Mass Electric charge

Unit h̄

2mecα

h̄

me(2cα)2 me 2e

The hydrogen-like eigenkets are used for the bound eigen-
kets of Hkα and Heα ,

Hkα|n, �,m〉 = −μkα

2n2
|n, �,m〉, (7)

Heα|N,L,M〉 = −1

2N2
|N,L,M〉, (8)

where n , �, m are the state quantum numbers of the Kα atom
and N, L, M are the state quantum numbers of the eα atom.

To calculate |ψe〉 for the ejected electron, we have used the
hydrogen like eigenket with positive energies.

〈�r|�k〉 = ei�k·�r�
(

1 − i

k

)
e

π
2k 1F1

(
i

k
, 1; i(kr − �k · �r)

)
, (9)

where �k is the momentum of the ejected electron relative
to the Kαe atom. It should be noted that the difference
between the signs in Eqs. (4) and (9) is related to the opposite
direction of the kaon and electron with respect to the α

particle.
We have used time-dependent perturbation theory to de-

termine the amplitude of the transition probabilities. For this
purpose, many detailed calculations have been done. Then, the
capture rate of a K− by the 4He atom is given by

�n � m
C =

∫
NHe V |Vf i |2 2π

k
δ (k − k′)d3k, (10)

where the allowed value of �k is �k′ which is determined by
conservation of energy:

k′ =
√

q2

μ
+ 2E0He − 2En � m. (11)

Now we should determine the matrix elements Vf i . Because
there is a singularity term 1

|�rkα−�r| in Vf i , it cannot be evaluated
by a straightforward numerical method. To solve this problem,
we have used Fourier transformation of 1

|�rkα−�r| :

1

|�rkα − �r| =
∫

F ( �Q)
ei �Q · (�rkα−�r)

(2π )3/2
d3Q. (12)

It can be shown that 1
|�rkα−�r| = 1

2π2 ∫∞
0 dQ ∫2π

0

dφQ ∫+1
−1 ei �Q·(�rkα−�r)d(cos θQ). After detailed calculations,
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Vf i is given by:

Vf i =
√

0.4893i|m|( |m|
m

)m
√

(�+|m|)!
(�−|m|)!

π2
(2z)

3
2 e

π
2k �

(
1 + i

k

)
2πe−imφk

|m|!
∫ ∞

0
(z2 + Q2 + k2 + 2ikz)

i
k dQ

×
∫ +1

−1
d(cosθQ)

∫ ∞

0
rkα

2drkα

∫ +1

−1
d (cosθkα)

(−ε

2

)|m| (
eiQrkαcosθkαcosθQ〈�rkα|�q〉〈�rkα|un,l,0〉p

|m|
� (cosθkα)

p� (cosθkα)

)

×
{

z
(
1 + i

k

) (
2 + i

k

)
|m|

a2(2+ i
k

) 2F1

((
2 + i

k
+ |m|)

2
,

(
2 + i

k
+ 1 + |m|)

2
, |m| + 1; ε2

)

−
i
k

(z + ik)
(
1 + i

k

)
|m|

a2(1+ i
k

)(z2 + Q2 + k2 + 2ikz)
2F1

((
1 + i

k
+ |m|)

2
,

(
1 + i

k
+ 1 + |m|)

2
, |m| + 1; ε2

)}
, (13)

where a2 = z2 + Q2 + k2 + 2 Qk cos θQ cos θk , ε =
a2

2 Qk sin θk sin θQ
, 2F1 is the hyper- geometric function, � is the

gamma function, and z is the effective nuclear charge.
Now we can calculate the probability distribution (Pn) for

the n state, in which the K− is captured and produces a Kαe

atom:

Pn = �n
C

�tot
C

=
∑

� , m �n � m
C∑

n , � , m �n � m
C

, (14)

where �tot
C is the total capture rate of K− by the 4He atom.

Figure 2 shows Pn as a function of n states. It shows that
the initial n states of a K− in the Kαe atom have a broad
distribution around n = 29. Our calculations show that the re-
sults of a semiclassical approximation are not sufficient for the
simulation of the cascade processes in the kaonic helium atom.

We have also compared our results for Pn with those based
on the variational method to calculate the eigenkets for Kαe

atom [17,18]. Although Fig. 3 shows that they have similar
results in some n states, we can see that they have also some
differences. Calculations based on variational method [17,18]
show that Pn has three peaks which are not reasonable, how-
ever our results have only a broad peak. Furthermore, our cal-
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FIG. 2. Distribution of the n states at the instant of Kαe atom
formation (this work).

culated Pn in highly excited states is less than the results from
variational method. These differences can be explained as fol-
lows: The allowed � states decrease if n is increased. Therefore,
in high-n states the probability of the Kαe atom formation has
a decreasing behavior. Table II shows the maximum allowed
� state in some n states. When n > 46, there is no allowed �.
On the other hand, the cross section of the atomic formation
in low-n states is smaller than those in highly excited n states.

III. CALCULATION OF THE RATE OF THE INTERNAL
AUGER EFFECT IN THE Kαe ATOM

When a K− is captured by a 4He atom, a highly excited
Kαe atom is produced. The Kαe atom is a very unstable
system and is deexcited by the internal Auger effect. The
Auger electron carries the excitation energy and a Kα+ ion is
produced (Fig. 4).

By the same procedure used in previous sections, we can
write Hamiltonian in the center-of-mass system:

H = Hkα + Heα + 1

2|�rkα − �r| , (15)

where Hkα = p2
k

2μ
− 1

rkα
and Heα = p2

e

2 − 1
reα

.
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FIG. 3. Distribution of the n states at the instant of Kαe atom
formation using the variational method [17].
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FIG. 4. Diagram of the internal Auger effect
in Kαe atom.

The third term of Eq. (15) is considered a perturbation
potential, V (t):

V (t) =
{

0, t < 0

V = 1
2|�rkα−�r| , t > 0

(16)

where t = 0 is the time of Kαe production. Using Fermi’s
golden rule, we have

d �
(n � m |n′�′m′)
I.A. = 2π |Vf i |2 δ (Ef − Ei) d3 k = 2π

k
|Vf i |2

× δ (k − k′) d3 k, (17)

where En � m is the eigenvalue of the energy of the Kαe atom.
Because the probability of electron ejection is equal for all
directions, the integral of Eq. (17) with respect to k is

�
(n � m |n′�′m′)
I.A. = 8π2k′ |Vf i |2, (18)

which is the internal Auger effect rate. Using the same
procedure as in the previous section, we can determine the
matrix elements Vf i . For this purpose, the z direction is
selected in the same direction of �k. It can be shown that the
Vf i is equal to zero unless m′ = m. We can determine Vf i by
detailed calculations as follows:

Vf i = δm
m′

(2)
3
2 e

π
2k �

(
1 + i

k

)
π

√
(� − |m|)! (�′ − |m|)!
(� + |m|)! (�′ + |m|)!

∫ ∞

0
dQ

∫ +1

−1
d cos θQ

∫ ∞

0
r2
kαdrkα

∫ +1

−1
d cos θkαJ0(Qrkα sin θQ sin θkα)

×
{

eiQrkα cos θkα cos θQ〈�rkα|un,�,0〉〈n′, �′, 0|�rkα〉p
|m|
� (cos θkα)

p�(cos θkα)

p
|m|
�′ (cos θkα)

p�′(cos θkα)

(1 + Q2 + k2 + 2ik)
i
k

(1 + | �Q + �k|2)1+ i
k

×
[ (

1 + i
k

)
1 + | �Q + �k|2 −

i
k
(1 + ik)

1 + Q2 + k2 + 2ik

]}
(19)

Now we can evaluate the �
(n �m |n′�′m′)
I.A. by Eq. (18). The total

rate of the internal Auger effect in state n of a Kαe atom is
given by

�n
I.A. =

∑
�,m

∑
n′, �′,m′
n > n′

�
(n � m |n′�′m′)
I.A. . (20)

It is evaluated numerically as shown in Fig. 5. We can see
that the internal Auger effect is a very fast process and has a
peak at n = 20.

The internal Auger effect rapidly leads to a new distribution
of n′, �′ states for the Kα+ ion. The population of n′, �′ for
the Kα+ ion due to the internal Auger effect is calculated as
follows:

Pn′�′ =
∑
m′

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n�m

n > n′

�n�m
C

�tot
C

× �
(n�m|n′�′m′)
I.A.

�n�m
I.A.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (21)

TABLE II. The maximum allowed � state in some n states.

n 38 39 40 41 42 43 44 45 46

� 35 33 31 29 27 24 21 16 10

where �tot
C = ∑

n � m �n � m
C and �n�m

I.A. = ∑
n′�′m′ �

(n�m|n′�′m′)
I.A. .

�n�m
C

�tot
C

is the probability of the Kαe atom formation in an n, �, m

state and �
(n�m|n′�′m′ )
I.A

�n�m
I.A

is the probability of the Kα+ production in

an n′, �′,m′ state due to the internal Auger effect. Therefore,
when the Kα+ ion is produced, the initial distribution for the

0 5 10 15 20 25 30 35 40 45

1013
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1016

1017

 n I.A
(s-
1 )

n

FIG. 5. Internal Auger rate as a function of orbital n state of the
Kαe atom.
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FIG. 6. Initial distribution of the orbital n state in the Kα+ ion,
before cascade processes.

n′ state is given by

Pn′ =
n′−1∑
�′=0

Pn′,�′ (22)

which is shown in Fig. 6. Figure 6 shows that the maximum
allowed value of the n′ state is 27, when a Kα+ ion is produced.
In addition, the population of the Kα+ ion has a peak at

n′ = 25. It shows that 16.4% of Kα+ ions is produced in the
n′ = 25 state.

IV. CONCLUSIONS

In this paper, we investigated the interactions of a K− in
a 4He target. Capture rates of the K− by 4He atoms and the
internal Auger effect in the Kαe atom were calculated by
a quantum mechanical approach. For this purpose, we have
used time-dependent perturbation theory and Fermi’s golden
rule. Many detailed analytical and numerical calculations
were done in order to calculate the rates of the mentioned
processes.

These calculations are necessary for a Monte Carlo simu-
lation of the cascade processes of kaonic helium atoms. As we
discussed in this paper, after the K− beam enters a 4He target,
eventually Kα+ ions are produced and actually the cascade
processes takes place in Kα+ ions. So, to begin the simulation
of the cascade processes, initial n and � states in the Kα+ ion
should be determined as performed in this paper.

Furthermore, our quantum mechanical approach can be
used to calculate the cascade processes rates in Kα+ ions. We
follow the same procedure mentioned in this paper to evaluate
the cascade rates of Stark mixing, the external Auger effect,
Coulomb deexcitation, and radiative transitions in Kα+ ions.
We will use the results in forthcoming Monte Carlo simulation
of the cascade processes in Kα+ ions.
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