Theoretical analysis of $\Lambda(1405) \rightarrow (\Sigma \pi)^0$ mass spectra produced **in** $p + p \rightarrow p + \Lambda(1405) + K^+$ reactions

Maryam Hassanvand,^{1,2} Seyed Zafarollah Kalantari,² Yoshinori Akaishi,^{1,3} and Toshimitsu Yamazaki^{1,4}

¹*RIKEN, Nishina Center, Wako, Saitama 351-0198, Japan*

²*Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran*

³*College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan*

⁴*Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan*

(Received 30 October 2012; revised manuscript received 18 January 2013; published 8 May 2013)

We formulated the $\Lambda(1405)$ (abbreviated as Λ^*) $\to (\Sigma \pi)^0$ invariant-mass spectra produced in $p + p \to$ *p* + Λ^* + *K*⁺ reactions, in which both the incident channel for a quasibound *K*−*p* state and its decay process to $(\Sigma \pi)^0$ were taken into account realistically. We calculated $M(\Sigma \pi)$ spectral shapes for various theoretical models for Λ^* . These asymmetric and skewed shapes were then compared with recent experimental data of HADES, yielding $M(\Lambda^*) = 1405^{+11}_{-9}$ MeV/ c^2 and $\Gamma = 62 \pm 10$ MeV, where the interference effects of the $\bar{K}N$ - $\Sigma \pi$ resonance with the $I = 0$ and $I \Sigma \pi$ continuum are considered. The nearly isotropic proton distribution observed in DISTO and HADES is ascribed to a short collision length in the production of Λ^* , which justifies the high sticking mechanism of Λ^* and the participating proton into K^-pp .

DOI: [10.1103/PhysRevC.87.055202](http://dx.doi.org/10.1103/PhysRevC.87.055202) PACS number(s): 21*.*45*.*−v, 13*.*75*.*−n, 21*.*30*.*Fe, 21*.*90*.*+f

I. INTRODUCTION

The $\Lambda(1405)$ resonance discovered in 1961 [\[1\]](#page-7-0) (called herein Λ^*) has strangeness $S = -1$, spin-parity $J^p = (\frac{1}{2})^-$, and isospin $I = 0$. It has been interpreted as a quasibound state of K^-p embedded in the $\Sigma + \pi$ continuum since Dalitz-Tuan's original prediction [\[2\]](#page-7-0). In recent years, Akaishi *et al.* derived phenomenologically a complex $\bar{K}N$ interaction (called here the AY interaction) $[3-5]$ based on the mass and width of $\Lambda(1405)$, $M = 1405.1^{+1.3}_{-1.0}$ MeV/c² and $\Gamma =$ 50 ± 2 MeV [\[6–](#page-7-0)[8\]](#page-8-0) [the so-called $\Lambda(1405)$ ansatz]. They applied this very attractive interaction to few-nucleon systems involving one and two \bar{K} 's and found nuclear bound states with unusually high nuclear density $[3,9-12]$ $[3,9-12]$. On the other hand, a totally different framework with a double-pole structure of $\Lambda(1405)$ has emerged on the basis of chiral SU(3) dynamics (called here *Chiral*), on which $\Lambda(1405)$ is claimed to consist of two poles around 1420 and 1390 MeV/ $c²$, which are coupled mainly to $\bar{K}N$ and $\Sigma \pi$ channels, respectively [\[13,14\]](#page-8-0). Then, the resulting weakly attractive $\bar{K}N$ interaction leads to much shallower \bar{K} bound states [\[15,16\]](#page-8-0).

Thus, it is vitally important to determine the location of the K^-p resonance, whether $\Lambda(1405)$ is located at 1405 MeV/ c^2 or above 1420 MeV $/c^2$, from experimental data without prejudice. For this purpose we have to treat the $\Lambda(1405)$ structure with the *AY* model and the *Chiral* model on equal footing to be compared with experimental data. To resolve this issue, observations of $M(\Sigma \pi)$ spectra associated with resonant formation of Λ^* in the stopped- K^- absorption in ³*,*4He [\[17\]](#page-8-0) and also in *d* [\[18\]](#page-8-0) have been proposed. Whereas old bubble-chamber experiments of stopped *K*[−] in 4He [\[19\]](#page-8-0) indicated a preference of $\Lambda(1405)$ over $\Lambda(1420)$ [\[8,18\]](#page-8-0), a much more precise experiment with a deuteron target is expected at J-PARC [\[20\]](#page-8-0). Alternatively, Jido *et al.* [\[21\]](#page-8-0) proposed an in-flight *K*[−] reaction on *d*, whereas Miyagawa and Haidenbauer [\[22\]](#page-8-0) questioned the effectiveness of this method. In any case, old data on the in-flight $K^- + d$ reaction by Braun *et al.* [\[23\]](#page-8-0)

had a large statistical uncertainty in distinguishing $\Lambda(1420)$ and $\Lambda(1405)$, according to our statistical analysis. Future experiments at J-PARC of both stopped-*K*[−] [\[20\]](#page-8-0) and in-flight *K*[−] [\[24\]](#page-8-0) on *d* are expected to give a convincing conclusion.

Recent experiments on high-energy *pp* collisions have produced important data on the production of $\Lambda(1405)$:

$$
p + p \to p + \Lambda^* + K^+, \quad \Lambda^* \to \Sigma^{+,0,-} + \pi^{-,0,+}.
$$
 (1)

The ANKE experiment at COSY with an incident kinetic energy (T_p) of 2.83 GeV by Zychor *et al.* [\[25\]](#page-8-0) has yielded a $(\Sigma^0 \pi^0)^0$ invariant-mass spectrum. It was analyzed by Geng and Oset [\[26\]](#page-8-0) based on chiral SU(3) dynamics. They showed that the reaction in the Λ^* production region is dominated by the $|T_{21}|^2 k_2$ process, and they claimed that the spectrum develops a pronounced strength around 1420 MeV*/c*2, which differs from the 1405 MeV $/c^2$ peak in Hemingway's data [\[27\]](#page-8-0) analyzed by the $|T_{22}|^2 k_2$ process [\[6,7\]](#page-7-0) (see also Akaishi *et al.* [\[28\]](#page-8-0)). This result might have been accepted as evidence for a double-pole structure of Λ^* predicted by chiral SU(3) dynamics [\[13,14\]](#page-8-0), if the statistics of the data were good enough. The ANKE data were also analyzed by Esmaili *et al.* [\[18\]](#page-8-0), who, on the contrary, showed from a fair statistical comparison between the two models that the data were in more favor of the *AY* model, but the statistical significance was not sufficient to conclusively distinguish between *Chiral* and *AY* models. Thus, new data from HADES of GSI, which have just been published [\[29,30\]](#page-8-0), are valuable for solving the present controversy.

In the present paper we formulate the spectral shape of the $(\Sigma \pi)^0$ mass to provide theoretical guides to analyze experimental data of $(\Sigma \pi)^0$ mass spectra from the above reaction. We take into account both the formation and the decay processes of $\Lambda(1405)$ in *pp* reactions realistically, following our $\bar{K}N - \Sigma \pi$ coupled-channel formalism [\[5\]](#page-7-0). In this way, we derive the general form of the spectral function, which is not symmetric but skewed with respect to the pole position.

Then, we analyze $(\Sigma^{+-}\pi^{-+})^0$ spectra from HADES at $T_p =$ 3.50 GeV [\[30\]](#page-8-0).

II. FORMULATION

A. Coupled-channel treatment of Λ^*

Our coupled-channel treatment of $\Lambda(1405)$ is described in [\[5](#page-7-0)[,18\]](#page-8-0). We employ a set of separable potentials with a Yukawatype form factor,

$$
\langle \vec{k}'_i | v_{ij} | \vec{k}_j \rangle = g(\vec{k}'_i) U_{ij} g(\vec{k}_j), \qquad (2)
$$

$$
g(\vec{k}) = \frac{\Lambda^2}{\Lambda^2 + \vec{k}^2},\tag{3}
$$

$$
U_{ij} = \frac{1}{\pi^2} \frac{\hbar^2}{2\sqrt{\mu_i \mu_j}} \frac{1}{\Lambda} s_{ij},\tag{4}
$$

where *i* (*j*) stands for the $\overline{K}N$ channel, 1, or the $\pi \Sigma$ channel, 2, and μ_i (μ_j) is the reduced mass of channel *i* (*j*). Two of the nondimensional strength parameters, *s*¹¹ and *s*12, with a fixed s_{22} are adjusted so as to reproduce a set of assumed *M* and Γ values for the Λ^* pole [\[5\]](#page-7-0). The transition matrices,

$$
\langle \vec{k}'_i | t_{ij} | \vec{k}_j \rangle = g(\vec{k}'_i) T_{ij} g(\vec{k}_j), \qquad (5)
$$

satisfy

$$
T_{ij} = U_{ij} + \sum_{l} U_{il} G_l T_{lj}, \qquad (6)
$$

$$
G_{l} = \frac{2\mu_{l}}{\hbar^{2}} \int d\vec{q} \; g(\vec{q}) \frac{1}{k_{l}^{2} - q^{2} + i\epsilon} \; g(\vec{q}). \tag{7}
$$

The solution is given in a matrix form by

$$
T = [1 - U G]^{-1} U \tag{8}
$$

with

$$
(UG)_{lj} = -s_{lj} \sqrt{\frac{\mu_j}{\mu_l}} \frac{\Lambda^2}{(\Lambda - i k_j)^2},\tag{9}
$$

where k_j is a relative momentum in channel *j*.

Among the matrix elements, T_{11} , T_{12} , T_{21} , and T_{22} , the experimentally observable quantities below the $\bar{K} + N$ threshold are −(1*/π*) Im *T*11, |*T*21| ²*k*2, and [|]*T*22[|] ²*k*2, where the second term with $g^2(k_2) g^2(k_1)$ is a $\Sigma \pi$ invariant-mass spectrum from the conversion process, $\bar{K}N \to \Sigma \pi$ (which we call the " T_{21} " invariant mass"). The T_{21} invariant mass coincides with the *KN* missing-mass spectrum in the mass region below the $\overline{K} + N$ threshold, as denoted by relation [\[18\]](#page-8-0), that

$$
\operatorname{Im} T_{11} = |T_{21}|^2 \operatorname{Im} G_2. \tag{10}
$$

The third term with $g^4(k_2)$ is a $\Sigma \pi$ invariant-mass spectrum from the scattering process, $\Sigma \pi \longrightarrow \Sigma \pi$ (which we call the " T_{22} invariant mass").

B. $\Lambda^* \to (\Sigma \pi)^0$ spectrum shape

The diagram for the reaction Eq. [\(1\)](#page-0-0) is shown in Fig. 1. The decay processes via T_{21} and T_{22} are also given in this figure. The kinematical variables in the c.m. of the *pp* collision for both the formation and the decay processes are given in Fig. 2.

FIG. 1. (Color online) Feynman diagrams for the $p + p \rightarrow p + p$ $K^+ + \Lambda^* \rightarrow p + K^+ + (\Sigma \pi)^0$ reaction for (a) the process via T_{22} and (b) the process via T_{21} .

In the present reaction we use $|T_{21}|^2 k_2$ because the incident channel to bring $\Lambda(1405)$ is $K^- + p$ together with K^+ [see Fig. 1(b)]. This was also concluded by Geng and Oset [\[26\]](#page-8-0), who studied the reaction mechanism in detail. The $|T_{22}|^2 k_2$ spectrum would be applicable when Σ and π mesons are available in the incident channel, as shown in Fig. $1(a)$. The $|T_{22}|^2 k_2$ spectrum is characterized by a large tail [\[18\]](#page-8-0) in the higher-mass region up to the kinematical limit, which can in principle be recognizable by an observed spectrum. Experimentally, however, a bump in the upper-tail region

FIG. 2. (Color online) Kinematical variables in the center of mass of the *pp* collision for (a) the formation process, W_{form} , and (b) the decay channel, *G*(*x*).

may be masked by an ambiguous shape of the continuous background and may thus be difficult to extract. We may allow a small admixture of $|T_{22}|^2 k_2$ in our likelihood analysis of the experimental data.

The $|T_{21}|^2 k_2$ and $|T_{22}|^2 k_2$ curves of the *Chiral* model, as given by Hyodo and Weise [\[15\]](#page-8-0) as well as those of the *AY* model, are shown in Fig. [1](#page-1-0) (upper) of Ref. [\[18\]](#page-8-0). They will be compared with the new HADES data at the end of the present paper.

C. Spectral function in the *pp* reaction: $S(x)$

Now, we consider the spectrum function of the invariant mass, $S(x)$, in the case of *pp* reactions. We compose it in the impulse approximation framework by using the incident channel function, $W_{form}(x)$, and the decay channel one, $G(x)$, as follows:

$$
S(x) = W_{\text{form}}(x) \times G(x),\tag{11}
$$

with

$$
x = M(\Sigma \pi). \tag{12}
$$

 $G(x)$ is expressed in terms of the *T* matrices, T_{22} and T_{21} , as shown in Figs. $1(a)$ and $1(b)$. Each function calculated for an assumed *M* of the Λ^* pole is shown in Fig. 3.

D. Formation process function: *W***form**

The Λ^* formation from pp collision is calculated in a similar way as was done in [\[4\]](#page-7-0). We apply an impulse approximation to the formation process of Fig. [1](#page-1-0) with a model impulse *t* matrix,

$$
\langle \vec{r}_{\Lambda^*-p}, \vec{r}_{(\Lambda^*p)-K^+} | t | \vec{r}_{p-p} \rangle
$$

= $T_0 \delta(\vec{r}_{\Lambda^*-K^+}) \int d\vec{r} \frac{\exp(-r/b)}{b^2 r} \delta(\vec{r}_{\Lambda^*-p} - \vec{r}) \delta(\vec{r}_{p-p} - \vec{r}),$ (13)

where $\vec{r}_{a-b} = \vec{r}_a - \vec{r}_b$, T_0 is a strength parameter, and $b = m_B c/\hbar$ is a range which affects the dependence of the reaction amplitude on the momentum transfer to the adjacent proton in the $pp \to K^+ \Lambda^* p$ process. Then, the Λ^* formation probability is given as follows:

$$
W_{\text{form}}(x) = \frac{2|T_0|^2}{(2\pi)^3 (\hbar c)^6} \frac{E_0}{k_0} \int dE_1 \int d\Omega_1 d\Omega_2 \left(\frac{1}{1+b^2 Q^2}\right)^2
$$

$$
\times k_1 k_2 E_1 E_2 \left[1 + \frac{E_2}{E_3} \left(1 + \frac{k_1}{k_2} \cos(\theta_{pK^+})\right)\right]^{-1}, \tag{14}
$$

where E_0 and k_0 are the initial energy and momentum in the c.m. frame, as given by

$$
k_0 = \frac{1}{\hbar} \left[\frac{1}{2} M_p T_p \right]^{\frac{1}{2}}.
$$
 (15)

The other quantities, k_2 , E_2 , and E_3 , become functions of *x* due to conservation of momentum and energy, which is applied to all the participating particles to take recoil effects into account.

FIG. 3. (Color online) Normalized spectral functions *S*(*x*) (a) composed of the formation-process function W_{form} (b) and the decay-process function $G(x)$ (c) for $T_p = 2.50, 2.85,$ and 3.50 GeV. *m_B* = 770 MeV/ c^2 and $(\theta_p, \theta_{pK^+})$ = (90°, 180°)*.* The *M* value of Λ^* is assumed to be 1405 MeV/ c^2 , as indicated by the vertical dashed line.

Also, $\theta_{pK^+} = (\theta_p - \theta_{K^+})$ is the angle between K^+ and p, b is the range of the *pp* reaction, and the momentum transfer, *Q*, is

$$
Q = \left[k_0^2 + k_2^2 - 2k_0k_2 \cos \theta_p\right]^{\frac{1}{2}}.
$$
 (16)

As can be seen from the factor $1/(1 + b^2 Q^2)^2$, a shorter range of *b* can effectively moderate the strong suppression due to a large momentum transfer, *Q*, in a high-energy *pp* collision.

Figure 3(b) shows the behavior of $W_{\text{form}}(x)$ for $T_p = 2.50$, 2.83, and 3.50 GeV, the curves of which are normalized at $x = 1400 \text{ MeV}/c^2$. They have respective kinematical upper limits, which make the mass distribution damp toward the kinematical limit. As a result, the observed spectrum shape, $S(x)$, changes, as demonstrated in Fig. 3(a), whereas $G(x)$ is independent of T_p .

E. Decay process function: $G(x)$

The decay rate of $\Lambda(1405)$ to $(\Sigma \pi)^0$ is calculated by taking into account the emitted Σ and π particles realistically, following the generalized optical potential formalism in Feshbach theory [\[31\]](#page-8-0), given by Akaishi *et al.* [\[5,](#page-7-0)[28\]](#page-8-0). The

decay function, $G(x)$, is not simply a Lorentzian but is skewed because the kinematic freedom of the decay particles is limited, particularly, when the incident proton energy, T_p , decreases and approaches the production threshold. Its general form is given as

$$
G(x) = \frac{2(2\pi)^5}{\hbar^2 c^2} \frac{E_{\pi} E_{\Sigma}}{E_{\pi} + E_{\Sigma}} \text{Re}[\tilde{k}(x)] |\langle \tilde{k}(x)|t|\tilde{k_0}(x)\rangle|^2, \quad (17)
$$

where the relative momenta in the entrance and exit channels of Fig. $2(b)$ are calculated by

$$
\tilde{k_0}(x) = \frac{c\sqrt{\lambda(x, m_K, M_p)}}{2\hbar x}
$$
\n(18)

and

$$
\tilde{k}(x) = \frac{c\sqrt{\lambda(x, m_{\pi}, M_{\Sigma})}}{2\hbar x}
$$
 (19)

with

$$
\lambda(x, m_1, m_2) \equiv (x + m_1 + m_2)(x + m_1 - m_2)
$$

$$
\times (x - m_1 + m_2)(x - m_1 - m_2). \quad (20)
$$

It should be noticed that $\lambda(x, m_K, M_p)$ becomes negative at around $x = 1400 \text{ MeV}/c^2$, where we must choose a positive Im \tilde{k} on the physical Riemann sheet. This case corresponds to direct excitation of the Λ^* quasibound state from the $p + p$ channel.

In the case of *AY*, the *T* matrix is

$$
\langle \tilde{k} | t_{21} | \tilde{k_0} \rangle = g(\tilde{k}) T_{21} g(\tilde{k}_0)
$$
 (21)

for the T_{21} process and

$$
g(\tilde{k}) = \frac{\Lambda^2}{\Lambda^2 + \tilde{k}^2}
$$
 (22)

with $\Lambda = m_B'c/\hbar$, m_B' being the mass of an exchanged boson, and \overline{k} is the relative momentum of Σ and π .

The shape of $G(x)$, as given by Eq. (17), includes the momenta $\tilde{k_0}$ and \tilde{k} , which are functions of T_p . However, the function $G(x)$ is shown to depend only on the invariant-mass x ; namely, $G(x)$ is a unique function of x and does not depend on T_p . It is bounded by the lower end $(M_l = M_\Sigma + m_\pi =$ 1328 MeV/ c^2) and the upper end $(M_u = M_p + m_{K^-})$ 1432 MeV/ c^2).

It is to be noted that the position of the peak in $G(x)$ is significantly lower than the position of the pole $(M =$ 1405 MeV/ c^2) in T_{21} , as assumed here and indicated by the vertical dashed line. Furthermore, the position of the peak (or centroid) of $S(x)$ is lowered due to the formation channel function $W_{form}(x)$.

III. NUMERICAL RESULTS

In this section we present results from numerical calculations, and we discuss their physical implications. The importance of the present work is to consider both $W_{form}(x)$ and *G*(*x*) functions. In most illustrative samples, we applied the *AY* model with the Particle Data Group (PDG) parameters of [\[7\]](#page-7-0), $M = 1407 \text{ MeV}/c^2$ and $\Gamma = 50 \text{ MeV}$. To compare the *Chiral* model with the *AY* model on equal footing, we also applied

FIG. 4. (Color online) Incident energy dependence of the absolute values of the spectral function at $m_B = 770 \text{ MeV}/c^2$ and $(\theta_p, \theta_{pK^+}) =$ (90◦*,* 180◦).

the same procedure as above to Hyodo-Weise's *T* matrices to obtain realistic spectrum shapes *S*(*x*).

A. Dependence on the incident energy, T_p

For Eqs. (11) , (14) , and (17) again, it is clear that the spectral function depends on the incident proton energy due to the $W_{\text{form}}(x)$ function and $G(x)$. Figure 4 shows absolute values of spectral functions $S(x)$ for various incident energies (T_p) at $m_B = 770 \text{ MeV}/c^2$ and $(\theta_p, \theta_{pK^+}) = (90^\circ, 180^\circ)$. The shape of $S(x)$ is nearly the same, but toward the reaction threshold $(T_p^{\text{thresh}} = 2.42 \text{ GeV})$ not only does the absolute value diminish but also the spectral shape changes drastically, as shown in Fig. $3(a)$ for the normalized spectral functions at $T_p = 3.50, 2.83,$ and 2.50 GeV. The most extreme case is seen at $T_p = 2.50$ GeV, where the main part of $x > 1400$ MeV/ c^2 is missing due to the kinematical constraint, and a very skewed component below 1400 MeV*/c*² appears.

B. Behavior near the production threshold of T_p

The above prediction is indeed in good agreement with the observed spectra of DISTO at $T_p = 2.50$ and 2.85 GeV [\[33\]](#page-8-0), as shown in Fig. [5.](#page-4-0) Even in such a very skewed spectrum, one can extract the decay function, $G(x)$, from an observed spectral function by taking the ratio

$$
DEV[G(x)] \equiv \frac{S(x)^{obs}}{W_{form}(x)}
$$
 (23)

using a calculated *W*form function. This is a kind of the *deviation spectrum method* introduced in stopped-*K*[−] spectroscopy [\[18\]](#page-8-0).

C. Angular distribution and correlation

The cross section of this reaction has substantial angular dependence (Fig. 6), but the bound-state peak is distinct at any angle, and we can choose $(\theta_p, \theta_{pK^+}) = (90^\circ, 180^\circ)$, because the cross section is modest and the peak-to-background ratio

FIG. 5. (Color online) Experimental spectra of $\Delta M(pK^+)$ in the $pp \rightarrow p\Lambda K^{+}$ reaction at $T_p = 2.50$ and 2.85 GeV in DISTO experiments. Taken from [\[33\]](#page-8-0).

remains large. The normalized cross sections (spectral shapes) at various angles are found to be nearly the same. Since the two incident protons are indistinguishable, the $\Lambda(1405)$ formation process is angular symmetric, as shown in Fig. 6. We can write

$$
\sigma(\theta_p, \theta_{pK^+}) = \sigma(\pi - \theta_p, -\theta_{pK^+})
$$
\n(24)

for $\theta_p = 0^\circ - 90^\circ$ and $\theta_{pK^+} = 0^\circ - 180^\circ$.

According to Eqs. [\(14\)](#page-2-0) and [\(16\),](#page-2-0) W_{form} , and thus the spectral function, $S(x)$, are related to the outgoing proton angle, θ_p , and the angle between the outgoing proton and K^+ , θ_{pK^+} , as shown in Fig. 7. Although these curves look different, the spectrum shape does not depend on the angle. We choose and use $\theta_p =$ 90°, $\theta_{pK^+} = 180^\circ$ in all of the following calculations.

D. Dependence on the exchanged boson mass

Figure 6 shows the normalized angular distributions of the outgoing proton, θ_p , for various masses of the exchanged

FIG. 6. (Color online) Normalized angular distributions of the outgoing proton for different exchanged boson masses, $m_B = 2000$, 770, and 140 MeV/ c^2 , at $T_p = 3.50$ GeV.

FIG. 7. (Color online) The spectral functions for various angles, $(\theta_p, \theta_{pK^+})$, for $T_p = 3.50$ GeV and $m_B = 770$ MeV/ c^2 .

boson, $m_B = 2000$, 770, and 140 MeV/ c^2 , at $T_p = 3.50$ GeV. The nearly isotropic angular distribution with a large boson mass explains the experimental data of HADES at $T_p =$ 3*.*50 GeV [\[29,30\]](#page-8-0), which shows that the proton angular distributions together with $\Lambda(1405)$ and $\Lambda(1520)$ are nearly isotropic. A similar behavior is observed in the DISTO data at T_p = 2.85 GeV (see Fig. 5 of the present paper and Refs. [\[33,34\]](#page-8-0)). Such a short collision length as revealed in the production of $\Lambda(1405)$ in the *pp* reaction is one of the key mechanisms $(\Lambda^*$ doorway) responsible for forming K^- *pp* from high sticking of Λ^* and *p* [\[4\]](#page-7-0). On the other hand, it is well known that the proton emitted in the ordinary $pp \rightarrow p + \Lambda + K^+$ reaction has sharp forward and backward distributions, indicating that the mediating boson is $m_B = m_\pi$ [\[32–34\]](#page-8-0).

IV. *χ***² FITTING OF HADES DATA**

A. HADES data

In this section we analyze the recent HADES data for charged final states of $\Sigma^-\pi^+$ and $\Sigma^+\pi^-$ in a *pp* collision at $T_p = 3.50$ GeV. The data we use are the missing-mass spectra, $MM(pK^+)$, deduced by the HADES group, as given in Fig. [1](#page-1-0) of [\[30\]](#page-8-0), which are corrected for acceptance and efficiency of the detector system. They are expressed as

$$
Y(x) = Y_{\Lambda^*}(x) + Y_{\Sigma^*}(x) + Y_{\Lambda 1520}(x) + Y_{\text{NonRes}}(x), \quad (25)
$$

with Y_{Λ^*} for Λ^* , Y_{Σ^*} for $\Sigma(1385)$, $Y_{\Lambda1520}$ for $\Lambda(1520)$, and *Y*_{NonRes} for the nonresonant continuum. The HADES group decomposed the experimental data, $Y(x)$, by the above four components, which were obtained by model simulations, among which the $\Sigma(1385)$ and the $\Lambda(1520)$ components were determined by using the experimental data. The shape of the nonresonant $\Sigma \pi$ continuum was simulated. In their fitting they cautiously excluded the area around $1400 \text{ MeV}/c^2$ for $MM(pK^+)$ in order not to bias the finally extracted shape of the Λ^* resonance. Then, they found that a simulation of the Λ^* region by using a relativistic s -wave Breit-Wigner distribution with a width of 50 MeV/ $c²$ and a pole mass of 1385 MeV $/c^2$ can reproduce the experimental data very well, but using instead the nominal mass of $1405 \text{ MeV}/c^2$ fails.

This conclusion depends on their assumption of the symmetric Breit-Wigner shape, which is not valid in the case of a broad resonance with adjacent endpoints, $M(\Sigma + \pi)$ and $M(p + K^-)$, as we have seen. Thus, in turn, we decided to set up an excess component, $Y_{\Lambda^*}(x)$, by subtracting the given three components from the experimental spectrum $Y(x)$ as

$$
Y_{\Lambda^*}(x) = Y(x) - Y_{\Sigma^*}(x) - Y_{\Lambda 1520}(x) - Y_{\text{NonRes}}(x), \quad (26)
$$

where the statistical errors of $Y(x)$ are inherited to $Y_{\Lambda^*}(x)$.

B. Interference effects between the $\bar{K}N$ resonance and the $\Sigma \pi$ continuum

Before going into the analysis of the HADES data we discuss possible interference effects between the $\bar{K}N$ resonance and the $\Sigma \pi$ continuum.

1. Interference with the $I = 1 \Sigma \pi$ *continuum*

The charge-basis *T* matrices are related to the isospin-basis *T* matrices as

$$
|T_{\Sigma^{+}\pi^{-}}|^{2} \approx \frac{1}{3}|T_{I=0}|^{2} + \frac{1}{2}|T_{I=1}|^{2} + \sqrt{\frac{2}{3}}|T_{I=0}T_{I=1}|, \qquad (27)
$$

$$
|T_{\Sigma^-\pi^+}|^2 \approx \frac{1}{3}|T_{I=0}|^2 + \frac{1}{2}|T_{I=1}|^2 - \sqrt{\frac{2}{3}}|T_{I=0}T_{I=1}|,\qquad(28)
$$

where $|T_{I=2}|^2$ is neglected. The HADES $\Sigma^+\pi^-$ and $\Sigma^-\pi^+$ data show similar behavior: the χ^2 best-fit mass of each of the two spectra is obtained to be very close to one another. This means that the interference term between $I = 0$ and $I = 1$ has only a small effect on the resonance spectral shape. Then, we can treat the $I = 1$ contribution as a part of Y_{NonRes} in the analysis of the $I = 0$ Λ^* resonance, disregarding the interference especially for the sum of the $\Sigma^+\pi^-$ and $\Sigma^-\pi^+$ data.

2. Interference with the $I = 0 \Sigma \pi$ *continuum*

 $\Lambda(1405)$ (= Λ^*) is an *I* = 0 *L* = 0 *KN* resonance state coupled with the $I = 0$ $L = 0$ $\Sigma \pi$ continuum. Our theoretical spectrum curves in Fig. [11](#page-6-0) already include the $\bar{K}N$ threshold effect and also the interference effect with the $I = 0$ $L = 0$ $\Sigma \pi$ continuum, because we have solved a $\bar{K}N$ - $\Sigma \pi$ coupledchannel T -matrix equation. Thanks to the separation of Y_{NonRes} by the HADES group we need not calculate contributions from the $I = 0$ $L \ge 1$ $\Sigma \pi$ continuum and $I = 1$ all $L \Sigma \pi$ continuum, which cause no interference to the $I = 0$ $L = 0$ Λ^* resonance and therefore can be treated as *Y*_{NonRes}: this is a great advantage of the HADES data for extracting the resonance-pole parameters, the mass and the width of Λ^* .

Now we estimate the effect of the $\bar{K}N$ threshold and the effect of interference with the $I = 0$ $L = 0$ $\Sigma \pi$ continuum. By fixing the mass of Λ^* to be 1405 MeV/ c^2 , we change AMY's interaction strengths, $s_{11}, s_{12} = s_{21}$, so as to reproduce a given width range of 10–70 MeV. The obtained mass spectra are discussed below.

Figure 8 shows the $\bar{K}N$ threshold effect on the $\Sigma \pi$ invariant mass spectrum, $|t_{21}|^2 k_2$, where the interference effect

FIG. 8. (Color online) Transition mass spectrum, $|t_{21}|^2 k_2$, including the $\bar{K}N$ threshold effect. All the heights are normalized to a same value.

is suppressed by putting $s_{22} = 0$. When the width is narrow enough, the spectrum is almost symmetric with a peak close to the pole position. When the width becomes wide, the peak position is lowered from the pole position and the spectrum shape is skewed: this is the $\bar{K}N$ threshold effect on the spectrum. Figure 9 shows results when the interference effect with the $I = 0$ $L = 0$ $\Sigma \pi$ continuum is switched on. The interference effect is not so large for the transition mass spectrum, $|t_{21}|^2 k_2$, since the entrance channel to form Λ^* has no $Σπ$ continuum component.

On the other hand, Fig. [10](#page-6-0) shows results of the conventional mass spectrum, $|t_{22}|^2 k_2$, including the interference effect with the $I = 0$ $L = 0$ $\Sigma \pi$ continuum. The interference effect is rather large, since the entrance going to Λ^* consists of just $\Sigma \pi$ continuum components, which make the resonance shape

FIG. 9. (Color online) Transition mass spectrum, $|t_{21}|^2 k_2$, including both the $\bar{K}N$ threshold effect and the interference effect with the $I = 0 L = 0 \Sigma \pi$ continuum. All the heights are normalized to a same value.

FIG. 10. (Color online) Conventional mass spectrum, $|t_{22}|^2 k_2$, including both the $\bar{K}N$ threshold effect and the interference effect with the $I = 0$ $L = 0$ $\Sigma \pi$ continuum. All the heights are normalized to a same value.

deform appreciably. The peak shift comes almost from the interference with the $I = 0$ $L = 0$ $\Sigma \pi$ continuum, as seen from an inflection at the pole position and a succeeding interference minimum (see Fig. 8(b) of [\[35\]](#page-8-0)). The CLAS data [\[36\]](#page-8-0) seem to be a case of $|t_{22}|^2 k_2$ where the coupling

with the $\Sigma \pi$ continuum becomes significant. The interference between $I = 0$ and $I = 1 \Sigma \pi$ amplitudes gives rise to a strong charge dependence of $\Sigma^+\pi^-$, $\Sigma^0\pi^0$, and $\Sigma^-\pi^+$ mass spectra.

The HADES data are well fitted with the transition mass spectrum, $|t_{21}|^2 k_2$, as seen from the resemblance between $\Gamma =$ 60 or 50 MeV curves of Fig. [9](#page-5-0) and (a) or (b) of Fig. 11. It is noted that the peak shift takes place mainly due to the $\bar{K}N$ threshold effect in this case.

C. Deduced mass and width

The HADES spectra, as given in Fig. [1](#page-1-0) of [\[30\]](#page-8-0), indicate that the spectra of the two charged channels are similar to each other, yielding nearly the same *M* values. This fact indicates that the $\Sigma \pi$ resonance is formed by nearly pure charged states, $\Sigma^+\pi^-$ and $\Sigma^-\pi^+$, without isospin mixing. It also justifies the use of T_{21} for the analysis of $M(\Sigma \pi)$ in the case of pp reactions. On the other hand, the statistical fluctuation of each charged-channel spectrum is rather large. Thus, for the final analysis we use the sum data of HADES ($\Sigma^+\pi^- + \Sigma^-\pi^+$), which is presented in Fig. $1(c)$ of [\[30\]](#page-8-0). Keeping the last three components of Eq. (26) fixed, we fit the experimental data of $Y_{\Lambda^*}(x)$ with $n = 21$ data points in the range of 1300 to 1550 MeV/ c^2 (closed points with error bars in Fig. 11) by assumed theoretical functions *S*(*x*).

FIG. 11. (Color online) Comparison of HADES data ($\Sigma^+\pi^- + \Sigma^-\pi^+$, closed squares) at $T_p = 3.50$ GeV [\[30\]](#page-8-0) with best-fit theoretical spectral functions *S*(*x*). (a) Best-fit HKAY curves (with $\chi^2 = 9.5$, $M = 1405^{+11}_{-9}$ MeV/c², and $\Gamma = 62 \pm 10$ MeV). (b) *AY* model with the PDG parameters (with $\chi^2 = 14$, $M = 1405.1^{+1.3}_{-1.0}$ MeV/c², and $\Gamma = 50$ MeV [\[8\]](#page-8-0)). The *Chiral* model using HW's T_{21} [with $\chi^2 = 111$, (c)] and T_{22} [with $\chi^2 = 39$, (d)].

FIG. 12. (Color online) Confidence level contours from χ^2 fitting of the HADES data of $\Sigma^+\pi^- + \Sigma^-\pi^+$ at $T_p = 3.50$ GeV. The PDG values are also shown.

Generally, the experimental histogram, N_i , $i = 1, \ldots, n$, with respective statistical errors, σ_i , is fitted to a theoretical curve, $S(x; M, \Gamma)$, with $x = MM(pK^+)$ involving the mass *M* and width Γ as free parameters by minimizing the χ^2 value:

$$
\chi^2(M,\Gamma) = \sum_{i=1}^n \left(\frac{N_i - S(x_i;M,\Gamma)}{\sigma_i} \right)^2.
$$
 (29)

Figure [11](#page-6-0) shows the results of the χ^2 fitting, where the HADES data ($\Sigma^+\pi^- + \Sigma^-\pi^+$) at $T_p = 3.50$ GeV [\[30\]](#page-8-0) are compared with best-fit theoretical spectral functions, $S(x)$. The present *AY* treatment (hereafter called HKAY), with the PDG values $(M = 1405.1^{+1.3}_{-1.0} \text{ MeV}/c^2 \text{ and } \Gamma = 50 \text{ MeV [8])}$ $(M = 1405.1^{+1.3}_{-1.0} \text{ MeV}/c^2 \text{ and } \Gamma = 50 \text{ MeV [8])}$ $(M = 1405.1^{+1.3}_{-1.0} \text{ MeV}/c^2 \text{ and } \Gamma = 50 \text{ MeV [8])}$ adopted, gives a remarkable fitting with $\chi^2 = 11$, which is comparable with the statistically expected value, $\langle \chi^2 \rangle_{\rm exp} \sim 19$. On the other hand, the *Chiral* model gives much larger χ^2 values of ∼111, when *T*₂₁ is chosen, and of 39, when *T*₂₂ is chosen. Another *Chiral* model spectrum by Geng and Oset [\[26\]](#page-8-0) is almost identical to HW's T_{21} . Thus, the chiral models indicate a substantial deviation from the experimental data.

Furthermore, we can find best-fit values of (M, Γ) from drawing confidence contour curves by varying the parameters (M, Γ) in a plane. The results are shown in Fig. 12. From this contour mapping we obtain the following best-fit values with 68% confidence limits (1*σ* errors):

$$
M = 1405^{+11}_{-9} \text{ MeV}/c^2,
$$
 (30)

$$
\Gamma = 62 \pm 10 \text{ MeV.}
$$
 (31)

The best-fit curves are shown together with the experimental points in Fig. [11.](#page-6-0) The *M* value thus obtained from the present

analysis of the new HADES data confirms the traditional value [7[,8\]](#page-8-0).

V. CONCLUDING REMARKS

We have presented results of our calculation for the spectral shape of $MM(pK^+)$ in the $pp \to p\Lambda^*K^+$ reaction based on the $\bar{K}N-\Sigma \pi$ coupled-channel treatment. We took into account both the entrance process and the decay process. The formation probability, W_{form} , of Λ^* in a *pp* collision and the decay rate, $G(x)$, to $(\Sigma \pi)^0$ were formulated. The spectral function is given by $S(x) = W_{form} \times G(x)$. It was found to be asymmetric and skewed due to the kinematic limitation imposed by the entrance channel. The peak of $S(x)$ is not located at the pole position.

With this tool in hand we analyzed the recent HADES data. The interference effects of the $\bar{K}N-\Sigma \pi$ resonance with the $I = 0$ and 1 $\Sigma \pi$ continuum are considered. Although the observed spectra of $MM(pK^+)$ appear to show the peak position at around 1385 MeV/ c^2 , the χ^2 fitting by our theoretical spectral functions provided $M = 1405^{+11}_{-9}$ MeV/ c^2 . This value is in good agreement with the values obtained from a recent analysis [\[17\]](#page-8-0) of an old experimental data of stopped- K^- in ⁴He [\[19\]](#page-8-0), taken up as the updated PDG value $(M = 1405.1^{+1.3}_{-1.0} \text{ MeV}/c^2)$ [\[8\]](#page-8-0). On the other hand, the *Chiral* model with *M* ∼ 1420 MeV/ c^2 cannot reproduce the experimental data.

The Faddeev method is suitable for treating final-state interactions of three particles. However, it is difficult to apply this method to the present high-energy *p*-induced processes where so many partial waves are involved. On the other hand, for the low-energy $K^- + d$ reaction Révai [[37\]](#page-8-0) succeeded in extracting the $\Lambda(1405)$ resonance structure by using the Faddeev method. We are considering an analysis of future data of stopped *K*[−] on *d*, proposed in [\[18,20\]](#page-8-0), by fully taking account of final-state interactions in the Faddeev formalism.

The proton angular distribution in Λ^* production was also calculated. The isotropic distribution observed in HADES [\[30\]](#page-8-0) and DISTO [\[33,34\]](#page-8-0) were explained by a short-range collision with an intermediate boson mass heavier than the *ρ* meson mass. This is consistent with the calculated large cross section for the production of *K*−*pp* in *pp* collisions [4], which has recently been observed in DISTO experiments [\[32\]](#page-8-0).

ACKNOWLEDGMENTS

This work is supported by a Grant-in-Aid for Scientific Research from the Ministry of Science, Research, and Technology of Iran and by a Grant-in-Aid for Scientific Research from Monbukagakusho of Japan. One of us (T.Y.) acknowledges support by the Alexander von Humboldt Foundation, Germany.

- [1] M. H. Alston *et al.*, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.6.698) **6**, 698 (1961).
- [2] R. H. Dalitz and S. F. Tuan, [Ann. Phys. \(NY\)](http://dx.doi.org/10.1016/0003-4916(59)90064-8) **8**, 100 (1959).
- [3] Y. Akaishi and T. Yamazaki, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.65.044005) **65**, 044005 [\(2002\).](http://dx.doi.org/10.1103/PhysRevC.65.044005)
- [4] T. Yamazaki and Y. Akaishi, Phys. Rev. C **76**[, 045201 \(2007\).](http://dx.doi.org/10.1103/PhysRevC.76.045201)
- [5] Y. Akaishi, K. S. Myint, and T. Yamazaki, [Proc. Jpn. Acad. B](http://dx.doi.org/10.2183/pjab.84.264) **84**[, 264 \(2008\).](http://dx.doi.org/10.2183/pjab.84.264)
- [6] R. H. Dalitz and A. Deloff, J. Phys. G **17**[, 289 \(1991\).](http://dx.doi.org/10.1088/0954-3899/17/3/011)
- [7] K. Nakamura *et al.* (Particle Data Group), [J. Phys. G](http://dx.doi.org/10.1088/0954-3899/37/7A/075021) **37**, 075021 [\(2010\).](http://dx.doi.org/10.1088/0954-3899/37/7A/075021)
- [8] J. Beringer *et al.* (Particle Data Group), [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.86.010001) **86**, 010001 [\(2012\).](http://dx.doi.org/10.1103/PhysRevD.86.010001)
- [9] T. Yamazaki and Y. Akaishi, [Phys. Lett. B](http://dx.doi.org/10.1016/S0370-2693(02)01738-0) **535**, 70 (2002).
- [10] A. Doté, H. Horiuchi, Y. Akaishi, and T. Yamazaki, *[Phys. Lett.](http://dx.doi.org/10.1016/j.physletb.2004.03.046)* B **590**[, 51 \(2004\).](http://dx.doi.org/10.1016/j.physletb.2004.03.046)
- [11] A. Doté, H. Horiuchi, Y. Akaishi, and T. Yamazaki, *[Phys. Rev.](http://dx.doi.org/10.1103/PhysRevC.70.044313)* C **70**[, 044313 \(2004\).](http://dx.doi.org/10.1103/PhysRevC.70.044313)
- [12] T. Yamazaki, A. Doté, and Y. Akaishi, *[Phys. Lett. B](http://dx.doi.org/10.1016/j.physletb.2004.01.089)* 587, 167 [\(2004\).](http://dx.doi.org/10.1016/j.physletb.2004.01.089)
- [13] D. Jido, J. A. Oller, E. Oset, A. Ramos, and U. G. Meissner, [Nucl. Phys. A](http://dx.doi.org/10.1016/S0375-9474(03)01598-7) **725**, 181 (2003).
- [14] V. K. Magas, E. Oset, and A. Ramos, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.95.052301) **95**, 052301 (2005) .
- [15] T. Hyodo and W. Weise, Phys. Rev. C **77**[, 035204 \(2008\).](http://dx.doi.org/10.1103/PhysRevC.77.035204)
- [16] A. Doté, T. Hyodo, and W. Weise, *[Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.79.014003)* **79**, 014003 [\(2009\).](http://dx.doi.org/10.1103/PhysRevC.79.014003)
- [17] J. Esmaili, Y. Akaishi, and T. Yamazaki, [Phys. Lett. B](http://dx.doi.org/10.1016/j.physletb.2010.01.075) **686**, 23 [\(2010\).](http://dx.doi.org/10.1016/j.physletb.2010.01.075)
- [18] J. Esmaili, Y. Akaishi, and T. Yamazaki, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.83.055207) **83**, 055207 [\(2011\).](http://dx.doi.org/10.1103/PhysRevC.83.055207)
- [19] B. Riley, I-T. Wang, J. G. Fetkovich, and J. M. McKenzie, *[Phys.](http://dx.doi.org/10.1103/PhysRevD.11.3065)* Rev. D **11**[, 3065 \(1975\).](http://dx.doi.org/10.1103/PhysRevD.11.3065)
- [20] T. Suzuki, J. Esmaili, and Y. Akaishi, [EPJ Web Conf.](http://dx.doi.org/10.1051/epjconf/20100307014) **3**, 07014 [\(2010\).](http://dx.doi.org/10.1051/epjconf/20100307014)
- [21] D. Jido, E. Oset, and T. Sekihara, [Eur. Phys. J. A](http://dx.doi.org/10.1140/epja/i2009-10875-5) **42**, 257 [\(2009\).](http://dx.doi.org/10.1140/epja/i2009-10875-5)
- [22] K. Miyagawa and J. Haidenbauer, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.85.065201) **85**, 065201 [\(2012\).](http://dx.doi.org/10.1103/PhysRevC.85.065201)
- [23] O. Braun *et al.*, [Nucl. Phys. B](http://dx.doi.org/10.1016/0550-3213(77)90015-3) **129**, 1 (1977).
- [24] J-PARC E31 experiment, [http://j-parc.jp/researcher/Hadron/en/](http://j-parc.jp/researcher/Hadron/en/pac_0907/pdf/Noumi.pdf) [pac_0907/pdf/Noumi.pdf.](http://j-parc.jp/researcher/Hadron/en/pac_0907/pdf/Noumi.pdf)
- [25] I. Zychor *et al.*, [Phys. Lett. B](http://dx.doi.org/10.1016/j.physletb.2008.01.002) **660**, 167 (2008).
- [26] L. S. Geng and E. Oset, [Eur. Phys. J. A](http://dx.doi.org/10.1140/epja/i2008-10518-5) **34**, 405 (2007).
- [27] R. J. Hemingway, [Nucl Phys. B](http://dx.doi.org/10.1016/0550-3213(85)90556-5) **253**, 742 (1985).
- [28] Y. Akaishi, T. Yamazaki, M. Obu, and M. Wada, [Nucl. Phys. A](http://dx.doi.org/10.1016/j.nuclphysa.2010.01.176) **835**[, 67 \(2010\).](http://dx.doi.org/10.1016/j.nuclphysa.2010.01.176)
- [29] G. Agakishiev *et al.* (HADES Collaboration), [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.85.035203) **85**, [035203 \(2012\).](http://dx.doi.org/10.1103/PhysRevC.85.035203)
- [30] G. Agakishiev *et al.* (HADES Collaboration), [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.87.025201) **87**, [025201 \(2013\).](http://dx.doi.org/10.1103/PhysRevC.87.025201)
- [31] H. Feshbach, [Ann. Phys. \(NY\)](http://dx.doi.org/10.1016/0003-4916(58)90007-1) **5**, 357 (1958); **19**[, 287](http://dx.doi.org/10.1016/0003-4916(62)90221-X) [\(1962\).](http://dx.doi.org/10.1016/0003-4916(62)90221-X)
- [32] T. Yamazaki *et al.*, Phys. Rev. Lett. **104**[, 132502 \(2010\).](http://dx.doi.org/10.1103/PhysRevLett.104.132502)
- [33] P. Kienle *et al.*, [Eur. Phys. J. A](http://dx.doi.org/10.1140/epja/i2012-12183-5) **48**, 183 (2012).
- [34] K. Suzuki *et al.* (private communication).
- [35] O. Morimatsu and K. Yazaki, [Nucl. Phys. A](http://dx.doi.org/10.1016/0375-9474(88)90081-4) **483**, 493 (1988).
- [36] K. Moriya *et al.*, Phys. Rev. C **87**[, 035206 \(2013\).](http://dx.doi.org/10.1103/PhysRevC.87.035206)
- [37] J. Révai, [arXiv:1203.1813v3.](http://arXiv.org/abs/arXiv:1203.1813v3)